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COLLATZ BCUNDS AND "E COLLOCATION ME'IHOD 

Abstract - 
A systematic method is devised t o  obtain precise bomds i n  special dgenvalue 
problems, The method has the advantage that only differentiation is involved 
in  the process once suitable t r i a l  functions are obtained. 
bounding techniques in  which extensive integrations are necessary, th i s  method 
appears t o  have;the advantage i n  simplicity. 
ideally suited t o  the use of large-scale computers. 'Itio i l lus t ra t ive  problems 
are solved i n  order t o  demonstrate the capabilities of the technique, 

Compared with other 

In  application the method is 
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Introduction 

In many eigenvalue problems, the exact solution is very d i f f icu l t  t o  obtain 
and we must be content with approximate solutions. If the problem belongs to  the 
class of special eigenvalue problems, it is well-known that Collatz bounds can be 
obtained very simply, but these bounds usually have such a wide spread that an 
accurate estimate of the exact resul t  cannot be made. 
method which enables a systematic improvement of the bounds with a minimum 
number of t r ia l  functions. 

This paper suggests a 
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In an eigenvalue problem it is required to find one or more constants a , 
generally called eigenvalues, and corresponding functions 
eigenfunctions, such that a differential equation 

e , usually called 

is satisfied throughout a domain D subject to certain boundary conditions on 
the boundary of D, In general, the domain D may be either a one- or a two- 
dimensional continuum. For m y  eigenvalue problems M and N in E q .  (1) are 
both linear, homogeneous, self-adjoint, positive-definite, differential 
operators with the order of M greater than that of N. 
the eigenvalues are real and positive and the eigenfunctions form an 
orthogonal set. 

When the eigenvalue does not appear in the boundary conditions, a 
continuous eigenvalue problem is called specia1,provided that the operator 
N has the form 

Under these conditions 

where g is a prescribed continuous function which is positive throughout 
the domain D. 
eigenvalue problems becomes 

J'hus, the governing differential equation for special 

Many practical problems fall within the scope of the class of special 
eigenvalue problems. 
problems, 
value problems only. 

In particular we mention normal mode vibration 
The development of this paper is applicable to special eigen- 



1 Collatz has devised an enclosure theorem applicable to  special eigen= 
value problems, In the foxmulation of the Collatz bounds a t r i a l  function 
v is selected such that the  prescribed boundary conditions are identically 
satisfied.  A function L is then defined i n  terms of v as follow: 

If v is an eigenfunction #I~, then L defines a family of constants 
v is not an eigenfunction, then L varies throughout the domain D but the set 
of values taken by L possesses the following enclosure property: 

I f  

If Lmax and Lmin are the upper and lower bounds for  L within the domain 
D, then there always exists a t  least one eigenvalue A~ such that 

The separation of the bounds depends solely on the selection of the t r i a l  
function v. I f  v is arbi t rar i ly  selected, the bounds w i l l  generally have 
such a wide separation tha t  very l i t t l e  information on the exact eigenvalue 
A is revealed. I t  is, therefore, highly desirable t o  develop a systematic 
procedure for  improving the trial function v so that precise bounds can be 
obtained 

* 

The obvious way to  accomplish this purpose is t o  select  a t r i a l  function 
of the form 

v = vo + v1 (5) 

where vo and v1 both sa t i s fy  the boundary conditions and are functionally 
independent of each other, Substituting th i s  new t r i a l  function into Eq. (3) 
and otherwise following the same procedure w i l l ,  i n  general, lead t o  somewhat 
bet ter  bounds, 
precision through the inclusion in  v of additional independent t r i a l  functions vi" 

In principle, the bounds can be improved t o  any desired 

L, Collatz, "Eigenvertaufgaben m i t  technischen Anwendung" 

of the bounds is small 

Akademische Verlagsgesellschaft M, G, H., Leipzig (1949) p. 126 
* The term "precise bounds" is herein used t o  infer  that  the separation 



In the meantime, the algebra becomes increasingly tedious. 

obtain 
Equation (5) can be generalized by inserting coefficients co and c1 t o  

Upon substitution of the above expression into Eq. (3) we note tha t  co 
cancels out. 
the mode shape is determinate t o  within a constant coefficient only, 
Henceforth, we set co = 1 without loss of generality. We now have 

This is natural enough since, in eigenvalue problems, 

Herein, w have used only a single spatial  variable x but  it should be 
understood that we can use two spatial variables i f  desired, 
al as a parameter, we can obtain an inf ini te  family of bounds. 
t h i s  family we can select the highest lower bound and the lowest upper 
bound which may not correspond t o  the same x and 3; i.e,, 

By treating 
From 

-2 
a1*k2 

(7) 

These bounds are generally more precise than those obtained without using 
the parameter ala 

To carry t h i s  procedure still further, we can let the t r ia l  function 
have the fonn 

v = v o + f ; a  v 
P P  

so that  we  have P parameters at our disposal. In principle, we can obtain 



the bounds by l e t t ing  the a be any real numbers, 
unwieldy and inefficient, 
certain functional relations among the parameters a 
methods available t o  achieve th is  s a l ,  the collocation method is, perhaps, 
the simplest. 
by Eq, (8) sat isfy 4, (2) at  P points i n  the domain D; i aeo ,  

This procedure is 
P 
In order t o  realize an hprovement we require 

Among the various 

In this method e require that the trial function v given 

P O  

wherein k~ have replaced A with 6 since satisfaction of 4, (2) by v a t  
discrete points x=xi does not yield the exact eigenvalue A , Solving 
Eqs, (7) for  a results i n  P 

Now, a l l  the coefficients a are related by a single parameter B and we 
P 

obtain t k  following bounds: 

Lmin I Lmax 
x=xl Fx2 
B= B1 8' $2 

We observe that Eqs, (9) and (10) guarantee the satisfactian of E q ,  (2) 
approximately i n  the sense that it is sat isf ied a t  P discrete points 
instead of at a generic point, We expect that the bounds obtained i n  
this manner w i l l  be more precise than by other means presently available, 



Perhaps the simplest of a l l  normal mode vibration problems is that 
of the vibrating string, The exact eigenvalues are known t o  be n2 n=1,2, , e 

We present the solution of th i s  problem in  order t o  demonstrate the merit 
of the method devised in  the previous section, 
equation in  this case is 

The governing differential  

d x' 

subject t o  the following boundary conditions: 

wherein the s t r ing is taken to  be of unit length, 
special eigenvalue problem with 

Clearly, this is a 

d2 

g = l  

Thus, k~ can calculate the Collatz bounds, First, we take 

2 v = x - x  

which satisfies the boundary conditions given by &so (12b), 
Substitution into E q ,  (3) results in 

2 
2 L =  

x - x  



The & n o e a t o r  above must always be positive since 0 5  xz 1 so L approaches 
+ 

value, which must be a minim, a t  x = 1/2, Thus, the largest and smallest 
values of L occur at x=O and x=1/2 and, consequently, the Collatz bounds 

as x approaches 0 or 1, Additionally, by syrmnetry, L has a stationary 

Let us now t r y  

2 2 2  v =  ( x -  x )  + ( x - x )  

Substitution into E q .  (3) results in 

12 
L =  

1 + x - x 2  

Now w observe that as x tends t o  zero, L appmachs 12, Additionally, 
L has a minimum at x - 1/2 so that the largest and smallest values of L 
occur at x = 0 and x = 1/2, respectively, 
Collatz bomds in  t h i s  case 

Thus, we get the folloWing 

which is a substantial iraprovement over the previous caseo We could 
continw in this fashion t o  obtain further improvement by adding 
additional terms t o  the trial function. 
of the nrethod developed in  the previous section, 

with 

Instead w w i l l  now make we 

Let us take the trial function v i n  tk form given by Eq, (8) 



For one collocation point at x1=1/2, P=1 and Eq, (9) becomes 

I = O  
( d2v * B v )  

ax2 
Substituting into t h i s  cadition from Eq, (8) and using F q o  (13a) 
results in 

4 ( B -  8) - 
- 16 - $  

Substitution into Eiq, (3) from Eqs. (8) and (13c) results in 

By appropriate limiting processes we obtain the following results: 

B = 9.6 

9.6~ 6 2 16 

$ > 16 

l i m  
x+ 0 



In the event that = g06, from E q ,  (14a) we obtain 

I 

9 

12 
L =  

l + x - x Z  

We have seen this form of L before and we have the same bounds as 
previously derived; L e o p  

9,6 2 a 12 

These are completely valid bounds but they are not necessarily the 
best bounds possible, We observe from Fq,, [14b_l that for  every 

value of 6 except ga6, L approachest - as x tends t o  zero, 
Thus, the other extrema of L rnrst be stationary values of L, 
The conditions on the existene of stationary values of L are 
given by 

Now, k~ differentiate E q ,  (14a) with respect t o  x and set the 
result equal t o  zero t o  obtain 

(1-2x) [ (48-58 ) (16-B) + 8(48-58 I($-8) (x-x 2 )+96(6-8)2(~-x2)2]=0 

The first  term establishes the fact that there is a horizontal 
tangent t o  L at  x=1/2 which must occur as a consequence of symmetryo 



Tfius, w obtain the following condition: 

(48-5 8)(16-B ) + 8(48-58 )(B-8)(x-x2) + 96( ~-8)~(x-x) ’  = 0 (15a) 

Now M differentiate Eq, (14a) with respect t o  B and set the result  
equal t o  zero t o  obtain 

1 
x = ( 5 * K )  

which is valid for  a118 except @= 48 w h e r e  aL/a$ is indeterminate, 
I t  is rather interesting t o  observe that this result  is independent 
of 8; ioea ,  regardless of the value of B(eXcept for  ~=48) ,  L is 
stationary with respect t o  6 at the same spat ia l  positions, 
(Ea) establishes the conditions under which L is stationary with 
respect t o  x while E q ,  (15b) establishes the spat ia l  position of the 
stationary value of L with respect t o  6, 
are sa t i s f ied  simultaneously, we obtain the values of B and x for  
which L is stationary with respect t o  both variables simultaneously, 
Substitution f r o m  Eq, (15b) into E q ,  (15a) yields 

Equation 

I f  both of these conditions 

B = 9,905 

Substitution f r o m  EQ, (15b] into Eq, (14a) obtains 

L = 1 0  

10 



We see that every L-curve of the family must have a value of 10 
a t  x = (5 * &)/lo but only when B = 9,905 is L stationary, 
Eq, (14b) we see tha t  fo r  9,6 <82 16, L tends t o  - 00 as x approaches 
o or  1, ' nus, the stationary value of L a t  x = (5 *&>/lo for  6 = 
9,905 must be a maximum and, consequently, we obtain the following 
bounds on the eigenvalue 

From 

From Eqs, (14c) and (16) we f inal ly  obtain the following bounds on 
the fundamentai eigenvalue 

We have achieved a modest inpmvement in  the bounds over those 
obtained with the previous trial function, 

collocation solution, As collocation points we select x = 0 
and 1/2,  

In order t o  improve these bounds we proceed t o  a two.-point 

Now, the t r i a l  function is given by 

2 2 2  v =  ( x -  x )  + a l  ( x - x )  + a 2  ( x -  x213 

The collocation conditions are given by 

11 



Substitution &to these conditions from Eq, (17a) results in two algebraic 

equations which we readily solve to  get 

Substituting fraan Eq, (17a) into Eq, (3) and using Eqs, (17~) leads t o  

12 [ (116 - 120) + 10 (48-56 ) (x-x~) ] 
L =  

( 6-24) (1+x-x2) + 4(48-58 ) (x-x2) 

We must now find the extrema of L w i t h  respect t o  x and 80 

the customav methods of finding extrema, as we have previously done; 
however, now the algebra involved becomes excessively complicated 
and tedious, A more profitable approach is to  make use of a computer 
a t  th is  point, The general idea of the computer program is to  calculate 

of 8, by the fact  that, as the separation of the bounds on the eigenvalue 
X becomes smaller, $ w i l l  approach A, lhs, the value of 8 that  w i l l  

yield the best bounds w i l l  l ie in  the range 

We can use 

and Lmax corresponding t o  a given $, We are led, i n  the selection %in 

The procedure is t o  select  several values of 8 i n  th i s  range and, 
cormsponding to each value of 8 we calculate bounds on X by means 
of the computer program, 
the highest lower bound and the lowest upper bound, These two bounds 

Finally, f r o m  among these bounds we select  

1 2  



I 

w i l l  ordinarily correspond t o  two diffexent values of 8. Following 
t h i s  procedure for the two-point collocation solution defined by EQs. 
(17) we obtained the following bounds: 

We see that the t o t a l  separation of the bounds is only 0.2 per cent, 
This would also correspond t o  the maximun error in the eigenvalue, 

We can obtain still more improvement by proceeding t o  a 
three-point collocation solution, 
x = 0, 1/4 and 1/2, w obtaiaed the following bounds: 

Using the collocation points 

9.869 2 A 1  5 9,870 

w h e r e  the maximum error  is only 0,Ol per cent, This is probably more 
accurate than is usually required but the calculation was carried 
out t o  demonstrate the possibil i t ies o f  the method pmposed herein, 
The pr6cedul.e is very straight-forward and the computer programs 
involved, while not t r i v i a l ,  are ,extremely simple, 
proceed t o  a somewhat more complicated i l lus t ra t ive  example, 

Let us now 
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Axial-Shear Vibrations of a Long Bar 

Y 

The axial-shear mode of free v i b r a t i k  is that mode wherein the 
only non-zero caslpanent of displacement is the axial component and it 
was shown by Bal t rukcmis and Gottenberg that the governing differential  
equation is 

2 

2 v ?#=: & 
G a t  

w b r e i n  v denotes the usual Laplacian differential  operator, denotes 
the axial cepnent of displacemeat in this c m ,  2 z.?d G denote the mass 
density and shear modulus of the bar material while t denotes tiw. Since 
we are interested in free, hannonic oscillations, we define 

and, consequently, from Fq, (18a) we obtain 

2 
- V I -  X Y  

Baltrukmis, J. H. and W. G. Gottenberg "Thickness-Shear Vibrations 
of Circular Bars" J. Acoust. Soc. her. 31 734 (June 1959) - 

1 4  



If the shape of the cross-secfion of the bar is natural t o  any 
common coordinate system, we can use Eq, (18c) directly t o  obtain 
bounds on the fundamental natural frequency of free vibrations in  
the mode under consideration, HokRVer, i f  the bar has a particularly 
complicated cross-section, it may be very difficult t o  obtain a system 
of trial functions which sat isfy . the boundary conditions identically, 
To alleviate t h i s  diff icul ty ,  we can transform the domain onto a 

simpler region by mean of a mapping function of the form 

in the transformed region, Note that this problem remains a special 
eigenvalue problem since 



We shall treat the problem of a long, prismatical bar with an 
epitrochoidal cross-section which is clamped such that the displacements 
along the lateral surfaces of the bar vanish identically, This cross- 
section is transformed onto a circular region by means of the following 
mapping function 

w h e r e  n denotes the number of axes of symmetry of the region while m 
is a shape factor, In the present illustrative problemwe l e t n  = 4 
and m = 1/6, The governing differential equation in the uni t  circular 
regiw. i? *le g - plmc! is a';..ler, by 

We now define the function L as follows: 

wherein v denotes an approximation t o  the exact eigenfunctionr which 
m u s t ,  of course, identically sat isfy the boundary conditions on I 

a system of t r ia l  functions we take 
As 



Let us calculate the bounds for  the simplest case P=O, "hen, 

1 

17  1 

2 v = vo = 1 - r 

Substituting into Eq, (22) and searching for  the largest and smallest 
values of L results in the following b l l a t z  bounds 

4 9 1 5 9 . .  

These are poor bounds, indeef , but another iqroved set can be 
readily obtained by introducing a new system of tr ial  functions 
u 
on the exact eigenfunction and alre related t o  v by 

@=0,1,2,, o o  , ,P) which identically sat isfy the boundary conditions 
P 

P 

M [u] = N [VI 

In t h i s  particular case we have 

Corresponding t o  vo ,as given by Eq, (23b), we find 



We calculate L from Eq, (22) by replacing v with ua Using Eq, (24c) 
then results in 

2 L = (1 = r )/uo 

Thus, we readily find the following Collatz bounds 

Which represent a considerable improvement over the previous bounds, 
Nonetheless, i n  many applications much greater precision is required 
and we proceed t o  apply the method proposed i n  the present paper, 

As before, we define 

v = v o + a  v 1 1  

v o = l - r  2 

' wherein 

18 



2 2  v 1 =  (1 0 r )  

Using Eq, (24a) we calculate 

u = uo * al u1 

We then obtain al by collocation at the generic point (rl, el) 

The following collocation condition is obtained f r a m  Eq, (21): 

w h e r e i n  we have used 8 r a t h r  than A since u is only an approximation 
t o  the eigenfunction, Using Eq, (24a), we can rewrite th i s  collocation 
condition as fOllOwS~ 

The f i rs t  factor does not, i n  general, vanish and, therefore, we f inally 
obtain the following collocation condition: 

(v - B u)l = 0 

I r=rl 
e=el 



Substitution from Eqs. (25a) and (26) yields 

20 

r 

a,=--++& I 

If, i n  Eq, (22), we replace v with u and use Eq, (24a), we obtain 

vo + al 
L o -  

u o + a  u 1 1  

Once again we select a series of values for  6 , 
Value of 6 we calculate a set of bounds on the eigenvalue 1 
using Eq, (28), 
upper bound qnd the highest lower bound t o  f inal ly  obtain 

Correspcmding t o  each 

From among these sets of bounds we selected the lowest 
by 

S056 2 x1 5 5,80 

We could continue i n  the same manner t o  obtain even more accurate bounds. 

Baltrukonis, Chi, and Laura3 calculated the following bounds on the 
eigenvalue i n  t h i s  problem 

Using the much mre complicated Kohn-Kato enclosure theorem, 

50682 x1 5 5,689 

The bounds obtained by the much simpler method proposed herein compare 
very favorably, 

' Baltrukonis, J, H, , M, C h i  and Po Laura "Axial-Shear Vibrations of 
Star-Shaped Bars - Kohn-Kato Bounds", Developments in Mechanics, 
Pergamon Press (1964) 


